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Abstract. There are claims in the literature that in neutrino oscillations and oscillations of neutral kaons
and B-mesons the oscillation phase differs from the standard one by a factor of two. We reconsider the
arguments leading to this extra factor and investigate, in particular, the non-relativistic regime. We actually
find that the very same arguments lead to an ambiguous phase and that the extra factor of two is a special
case. We demonstrate that the unitarity triangle (UT) fit in the standard model with three families is a
suitable means to discriminate between the standard oscillation phase and the phase with an extra factor
of two. If KL − KS and BdH − BdL mass differences are extracted from the K0 − K̄0 and B0

d − B̄0
d data,

respectively, with the extra factor of two in the oscillation phases, then the UT fit becomes significantly
worse in comparison with the standard fit and the extra factor of two is disfavored by the existing data at
the level of more than 3 σ.

PACS. 12.15.Ff, 14.60.Pq

1 Introduction

Compelling evidence in favor of neutrino oscillations ob-
tained in recent years in the Super-Kamiokande [1,2], SNO
[3], KamLAND [4], K2K [5] and other neutrino experi-
ments (see e.g. [6] and references therein) is a major break-
through in the search for physics beyond the standard
model.

All existing neutrino oscillation data with the excep-
tion of the LSND data [7]1 are well described if we assume
three-neutrino mixing. Defining ∆m2

jk = m2
j − m2

k, where
the mj are the neutrino masses, the best fit values

∆m2
21 = 7.9 × 10−5 eV2 and∣∣∆m2
32

∣∣ = 2.4 × 10−3 eV2,
(1)

were found for the solar [4] and atmospheric neutrino
mass-squared differences [9], respectively.

These values of the neutrino mass-squared differences
were obtained from neutrino oscillation data under the as-
sumption that the neutrino transition and survival prob-
abilities have the standard form (see e.g. the reviews in

a e-mail: bilenky@sissa.it
b e-mail: walter.grimus@univie.ac.at
c e-mail: schwetz@sissa.it
1 The result of the LSND experiment is planned to be

checked by the MiniBooNE experiment [8] which is currently
taking data.

[10]). Neutrino oscillations are due to the interference of
the amplitudes of the propagation of neutrinos with differ-
ent masses, and the standard phase differences are given
by the expression

∆ϕjk =
∆m2

jkL

2E
. (2)

Here E is the neutrino energy and L is the distance
between neutrino production and neutrino interaction
points. The theory of neutrino oscillations has a long his-
tory starting with the paper of Gribov and Pontecorvo [11]
(for other early papers see [12,13], for historical overviews
see [14]). There is also a rich literature on more elaborate
derivations of neutrino transition and survival probabili-
ties based on quantum mechanics and quantum field the-
ory (for a choice of these papers see [15–25], more citations
are found in the reviews [26–29]), which all result in the
standard oscillation phases of (2).

There exist, however, claims [30] that the phase differ-
ences in neutrino transition probabilities differ from the
standard ones by a factor of two and are equal to

∆ϕjk =
∆m2

jkL

E
. (3)

Other authors [31] claim that there is an ambiguity in the
oscillation phase. Theoretical discussions about the factor
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of two or other factors in oscillation phases continue dur-
ing many years – see e.g. [23,25,29,32,33] where these ad-
ditional factors have been refuted on theoretical grounds.
Taking into account the fundamental importance of the
problem we believe that it is worthwhile to think about
possibilities to confront the different oscillation phases to
experimental data.

The same non-quantum-theoretical arguments which
lead to an additional factor of two in neutrino oscilla-
tion phases can be applied to the oscillation phases in
M0 � M̄0 oscillations of neutral bosons M0 = K0, B0

d,
etc., as was demonstrated in [33]. A more complicated
additional factor has been obtained in [34], but was sub-
sequently refuted in [35]. Since in M0 � M̄0 oscillation
experiments the mesons are often non-relativistic, the rel-
evant oscillation phase is

∆ϕQT =
∆m2L

2p
, (4)

where p is the momentum of the neutral meson. In the
ultra-relativistic limit, (4) coincides with (2). In the fol-
lowing we use the subscript QT for the standard phase (4),
whereas phases different from the standard phase are
marked by a bar – see (3).

In recent years a remarkable progress in the measure-
ment of |Vcb|, |Vub| and other elements of the CKM ma-
trix was reached (see e.g. [36]). Another great achievement
was the measurement of the CP parameter sin 2β with an
accuracy of about 5% in the BaBar [37] and Belle [38]
experiments at asymmetric B-factories. This allowed one
to perform a new check of the standard model based on
the test of the unitarity of the CKM mixing matrix, the
so-called unitarity triangle test of the SM. It was shown
[39–43] that the SM with three families of quarks is in
good agreement with existing data, which include the data
on the measurements of the effects of CP violation. In the
unitarity triangle (UT) test the experimental values of the
KL − KS mass difference ∆mK and the BdH − BdL mass
difference ∆mBd

are used. The values of ∆mK and ∆mBd

were obtained from an analysis of the experimental data
based on the standard transition probabilities with the
standard oscillation phase (4).

In this paper we will present the result of the UT test
under the assumption that oscillation phases in K0 � K̄0

and B0
d � B̄0

d oscillations differ from the standard ones
by the above factor of two. We will show that such an
assumption is disfavored by the existing data at the level
of more than 3σ.

The plan of this paper is as follows. In Sect. 2 we will
discuss in some detail how this notorious factor of two
in the oscillation phase appears. Considerations how to
confront the factor of two with experiment are found in
Sect. 3. Section 4 contains our UT fit with and without the
factor of two. Our conclusions are presented in Sect. 5. The
technical details of the UT fit are deferred to an appendix.

2 The notorious factor of two

2.1 Notation

For simplicity we consider oscillations between only two
states. Thus we have two different masses mj (j = 1, 2).
We adopt the convention m1 < m2. For each mass eigen-
state the relevant phase is

ϕj = Ejt − pjL, (5)

where Ej =
√

p2
j + m2

j and pj are energy and momen-
tum, respectively. Though there are some arguments that
in particle oscillations mass eigenstates with the same en-
ergies are coherent [20,21,25,33], we want to be general
and assume neither equal energies nor equal momenta.

It is useful to define quantities ∆p and ∆m via

p1,2 = p ∓ 1
2
∆p, m1,2 = m ∓ 1

2
∆m, (6)

where p and m denote average momentum and mass, re-
spectively. Defining ∆m2 = m2

2 −m2
1 and ∆m = m2 −m1,

we have the relation

∆m2 = 2m∆m. (7)

In the following we will use the approximations

p � |∆p| with ∆p = a∆m. (8)

The dimensionless constant a is zero for p1 = p2. In gen-
eral it will be of order one or even larger. In the non-
relativistic case one can have a ∼ m/p. The first relation
of (8) excludes particles which are nearly at rest; such a
situation is not contained in our discussion. Consequently,
we do not allow for p � m or a � 1. However, we will
take care that all our considerations hold also in the mod-
erately non-relativistic limit. The second relation in (8)
states our coherence assumption: mass eigenstates with
momenta which differ more than the mass difference can
be coherent. Note that with (8) we have

p � ∆m. (9)

In the following we will need

∆E ≡ E2 − E1 =
1
E

(m∆m + p∆p)

=
∆m2

2E
+

p∆p

E
, (10)

with E = 1
2 (E1 + E2).

2.2 “Derivation” of extra factors in oscillation phases

Particle oscillation phases different from that of (4) have
been found for instance in [30,34], and an ambiguity of a
factor of two in the oscillation phase has been diagnosed
in [31]. It was stressed first in [33] and then in [29,32] that
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in essence the discrepancy to the standard result (4) is
due to the assumption that the two mass eigenstates are
detected at the same space point but at different times

tj = L/vj = LEj/pj . (11)

For each mass eigenstate, the corresponding time tj is in-
serted into the phase (5). The motivation for this is that
particles with different masses move with different veloci-
ties vj . This picture mixes quantum-theoretical and clas-
sical considerations in an ad hoc fashion and leads to the
conclusion that particle phases taken at different times,
though at the same space point, produce the interference,
which is in contradiction to the rules of quantum theory.

Equation (11) gives the phase

ϕj = Ejtj − pjL =
E2

j L

pj
− pjL =

m2
jL

pj
(12)

and, therefore, the phase difference

∆ϕ =
m2

2L

p2
− m2

1L

p1
. (13)

Then, using only ∆p � p, we obtain

∆ϕ � 2 ∆ϕQT −
(
m2

1 + m2
2
)
∆p L

2 p2 . (14)

As seen from this equation, ∆ϕ differs from ∆ϕQT not
only by a factor of two, but also by an additional term
which contains the arbitrary quantity2 ∆p. In the ultra-
relativistic case, which always applies to neutrinos but
also to M0 � M̄0 oscillations when their energy is high
enough, the additional term is negligible and we have the
ultra-relativistic phase(

∆ϕ
)
UR � 2 ∆ϕQT. (15)

For oscillations of non-relativistic neutral flavored mesons,
the additional term cannot only be comparable with the
first term but could even dominate in (14). Since ∆p is
arbitrary, we come to the conclusion that, for oscillations
of non-relativistic particles, (11) leads to an arbitrary –
and thus unphysical – oscillation phase.

In order to illustrate the latter point, let us consider
the two extreme cases of equal momenta and equal ener-
gies. In the first case with ∆p = 0, (14) gives

∆ϕ =
∆m2L

p
=

2m∆mL

p
. (16)

Clearly, we have again the notorious factor of two, in com-
parison with the quantum-theoretical result. On the other
hand, equal energies correspond to ∆p = −∆m2/(2p) (see
(10)) and with (14) the result is

∆ϕ =
∆m2L

p

(
1 +

m2

2p2

)
. (17)

2 In principle, one should be able to determine an upper limit
on ∆p from the widths of the wave packets of the particles
participating in the neutrino, K0, B0

d, etc. production and de-
tection processes [18,20,24].

This oscillation phase, which is similar to the one advo-
cated in [34], agrees with (16) only in the ultra-relativistic
limit.

2.3 The quantum-theoretical oscillation phase

Although it has been stressed many times (see e.g. [27])
that the quantum-theoretical oscillation phase does not
suffer from any ambiguity, it is instructive to repeat the
derivation of this fact here, in order to compare with
the derivation of (14). Quantum theory requires the two
phases (5) to be taken at the same space-time point.
Therefore, we have

∆ϕQT = ∆E T − ∆pL, (18)

where T characterizes the time when the interference takes
place. Then, with T = LE/p we obtain the quantum-
theoretical result

∆ϕQT =
(

∆m2

2E
+

p∆p

E

)
EL

p
− ∆pL

=
∆m2L

2p
=

m∆mL

p
, (19)

where the arbitrary quantity ∆p has dropped out.3 For
M0 � M̄0 oscillations, the phase (19) can also be written
in the familiar form ∆m τ , where τ is the eigentime of the
particle for covering a distance L.

We want to emphasize that a more complete under-
standing of the oscillation phase needs a full quantum-
mechanical or quantum field-theoretical approach. All
such treatments (see for instance the reviews [26,28,29]
and references therein) consistently give the result of (19).
In approaches not guided by quantum mechanics or quan-
tum field theory the conversion of time into a distance is
always the subtle point [33,35]. In all present experiments,
oscillations are treated as phenomena in space. If eigen-
times are used for the evaluation of data, then distances
are converted into times (see e.g. [37,38,44]).

3 Confronting non-quantum-theoretical
phases with experiment

Since we have seen that the derivation of phase (14) does
not conform to the rules of quantum theory whereas (4)
does, then one could ask the question: why consider the
phase (14) at all? From our point of view, the reason for
this is twofold.
(1) On the one hand, there is the subtlety that the time
difference ∆t = |t2 − t1| (see (11)), which is the culprit

3 It is reasonable to assume that T is L/v1 or L/v2 or some
average of these two expressions. What one takes precisely as T
is irrelevant, because all these possibilities differ only in terms
suppressed by ∆m and ∆p. Since ∆E is already small in that
sense (see (10)) and the first order in ∆m and ∆p is sufficient,
we take the velocity p/E.
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of the discrepancy with the quantum-theoretical result, is
immeasurably small.
(2) On the other hand, as we will show, the phases (16)
and (17) can actually be tested experimentally.

The time difference can be expressed as

∆t � L

2pE

∣∣∣∣∆m2 − (
m2

1 + m2
2
) ∆p

p

∣∣∣∣ . (20)

To get a feeling for the size of ∆t, we take the K0K̄0

system with ∆mK � 3.48 × 10−12 MeV and use for ex-
ample L = 1 m, p = 1 GeV and ∆p = 0. Then we find
∆t ∼ 5×10−24 s, which is indeed far beyond measurability.

As for an experimental test of the phase (17) we con-
sider two different measurements of the KL − KS mass
difference. Since this phase has an additional dependence
on the momentum, it is useful to compare two mea-
surements which have different average kaon momenta.
The CPLEAR experiment has measured [45] ∆mK =
(5295 ± 20 ± 3) × 106

�s−1. In that experiment kaons are
produced in the reaction pp̄ → K+π−K̄0 and the charged-
conjugate reaction, with pp̄ annihilation at rest. Thus the
kaons are non-relativistic. In the KTeV experiment the
kaons are in the ultra-relativistic regime; this experiment
has obtained [46] ∆mK = (5261 ± 15) × 106

�s−1. Ac-
cording to (17) the mass differences extracted in these
experiments should be different and related by

(∆mK)CPLEAR

(∆mK)KTeV
= 1 +

m2
K0

2 p2
K0

≥ 1 +
m2

K0

2 p2
K0 max

, (21)

where pK0 is the (average) neutral-kaon momentum in the
CPLEAR experiment.4 One can show that the maximal
energy of the neutral kaon in the CPLEAR reaction is
given by

EK0 max =
4 m2

p − m2
π − 2 mπmK

4 mp
, (22)

where mp, mπ and mK are proton, pion and kaon mass,
respectively. For our purpose the distinction between the
mass values of the charged- and neutral-kaon masses is
irrelevant. With the numbers above for the mass differ-
ences obtained by the CPLEAR and KTeV experiments,
we use the law of propagation of errors to compute the
value 1.006 ± 0.005 for the ratio on the left-hand side of
(21). We insert the values of the particle masses into (22)
and calculate pK0 max; then we arrive at 1.22 for the right-
hand side of (21), which is about 40 standard deviations
larger than the ratio of KL − KS mass differences. Conse-
quently, we conclude that the phase (17) is in contradic-
tion to the results of the CPLEAR and KTeV experiments.

The phase (16) which contains the notorious factor of
two needs a different approach; in the next section we will
use the fit to the unitarity triangle constructed from the
CKM matrix to show that this factor of two is experi-
mentally strongly disfavored. For the idea to compare the
∆m2 result of the solar neutrino experiments with that of
the KamLAND experiment see [47].

4 If (17) were correct, there should also be a dependence of
the extracted mass difference on pK0 .

4 The unitarity triangle fit

4.1 Description of the unitarity triangle analysis

Following the traditional way, the unitarity triangle (UT)
is given by the three points A = (ρ̄, η̄), B = (1, 0), C =
(0, 0) in the plane of the parameters ρ̄ and η̄, which are
defined by

ρ̄ = ρ

(
1 − λ2

2

)
, η̄ = η

(
1 − λ2

2

)
, (23)

where λ, ρ, η are the Wolfenstein parameters of the CKM
matrix. Pedagogical introductions to the UT can be found
e.g. in [39–41]. Our numerical analysis is based on the
input data as given in Table 1 of [43], and we use the
following constraints to determine the point A = (ρ̄, η̄).
(1) The measured value of εK = (2.280 ± 0.013) × 10−3.
The theoretical prediction for this quantity, which is a
measure for CP violation in K0 − K̄0 mixing, is given by5

εK =
B̂K C

∆mK
η̄ [(1 − ρ̄) D − E] , (24)

where ∆mK is the KL − KS mass difference and B̂K , C,
D, E are numbers which have to be calculated and/or de-
pend on measured quantities such as λ, mt, mc, |Vcb| (see
e.g. [40] for precise definitions).
(2) The experimental determination of |Vub/Vcb|. This ra-
tio is connected to ρ̄, η̄ by

√
η̄2 + ρ̄2 =

(
1
λ

− λ

2

) ∣∣∣∣Vub

Vcb

∣∣∣∣ . (25)

(3) The measurement of the BdH − BdL mass difference

∆mBd
= 0.502 ± 0.006 �ps−1 . (26)

The theoretical prediction for the square root of ∆mBd
as

a function of ρ̄, η̄ is given by
√

∆mBd
= F |Vcb|λ

√
η̄2 + (1 − ρ̄)2 , (27)

where F is a constant depending on mt and other quanti-
ties subject to theoretical uncertainties (see e.g. [40]).
(4) In addition we use direct information on the angles
of the unitarity triangle α, β, γ. The angle β has been
measured at BaBar and Belle, and we use the value
sin 2β = 0.726±0.037. For γ we use the value (59.1±16.7)◦
(see [43] for details), whereas for α we use the likelihood
function extracted from Fig. 10 of [43] to take into account
the two allowed regions for α around 107◦ and 176◦.

We do not use the constraint from ∆mBs
which usu-

ally is included in UT fits. The reason is that at present
only a lower bound exists on ∆mBs , and therefore no fur-
ther constraint is obtained for the oscillation phase with
the extra factor of two. However, we remark that once
an upper bound on ∆mBs will have been established in

5 For the sake of brevity we drop the phase factor exp(iπ/4)
in εK , since it plays no role in the following.
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the future, this will provide additional information on the
oscillation phase.

The fit is performed by constructing a χ2-function
χ2(ρ̄, η̄) from these observables, including experimental as
well as theoretical errors. Technical details on our analysis
are given in Appendix A.

4.2 Results of the UT analysis

The result of the standard UT fit is shown in the upper
panel of Fig. 1. It is in good agreement with the results
of various groups performing this analysis, compare e.g.
[36,43,48]. We show the allowed regions in the plane of
ρ̄ and η̄ at 95% CL for the individual constraints from
εK , |Vub/Vcb|, ∆mBd

, sin 2β, as well as the combined anal-
ysis including in addition the information on α and γ. The
95% CL regions are obtained within the Gaussian approx-
imation for 2 degrees of freedom (dof), i.e. they are given
by contours of ∆χ2 = 5.99. For the best fit point of the
combined analysis we obtain ρ̄ = 0.237, η̄ = 0.325 with
the 95% CL allowed region shown as the ellipse in Fig. 1.
Assuming that the χ2-minimum has as a χ2-distribution
with (6 − 2) dof our value of χ2

min = 1.4 implies the excel-
lent goodness of fit of 84%.

Let us now discuss how an extra factor of two in the
oscillation phase will affect the UT fit. If such a factor
is present the mass differences inferred from particle–
antiparticle oscillation experiments will be two times
smaller. Therefore, whenever in the UT analysis a mass
difference inferred from oscillations enters one has to use

∆m = r ∆m (28)

with r = 1/2, where ∆m is the value obtained with the
standard oscillation phase, i.e. this is the value which is
given by the Particle Data Group [48]. In the lower panel
of Fig. 1 we show the result of the UT fit by using the
extra factor of two in the oscillation phase. This factor
affects two observables relevant for the UT fit.
(1) In the prediction for εK shown in (24) the experimental
value for ∆mK is used. Since this value is obtained from
K0 � K̄0 oscillations, ∆mK has to be replaced by ∆mK

if there is an extra factor of two in the oscillation phase.
This moves the hyperbola in the (ρ̄, η̄) plane from εK to
the right, as visible in Fig. 1.
(2) The experimental value for ∆mBd

given in (26) has
to be replaced by ∆mBd

, which is a factor of two smaller.
Therefore, from (27) it is clear that the radius of the circle
in the (ρ̄, η̄) plane from ∆mBd

is reduced by a factor
√

2,
as can be seen also in Fig. 1.

The other constraints from |Vub/Vcb|, sin 2β, α and γ
are obtained from particle decays without involving any
oscillation effect, and therefore they do not depend on the
oscillation phase. One observes from Fig. 1 that the agree-
ment of the individual constraints gets significantly worse
using the extra factor of two. In particular, at 95% CL
there is only a very marginal overlap of the intersection of
the allowed regions from |Vub/Vcb| and sin 2β with the one
from εK . The best fit point in the lower panel of Fig. 1 has

χ2
min = 13.8, which implies a goodness of fit of only 0.8%,

assuming a χ2-distribution for 4 dof.
In Fig. 2 we show the χ2 minimized with respect to ρ̄

and η̄ as a function of the parameter r given in (28). Hence,
r = 1 corresponds to the standard oscillation phase, and
r = 1/2 corresponds to the extra factor of two. From this
figure one observes the remarkable feature that the best fit
point occurs nearly exactly at r = 1. In other words, even
if the extra factor in the oscillation phase is treated as a
free parameter to be determined by the fit, the data prefer
the standard oscillation phase. We find the following best
fit value and 1σ (2σ) allowed ranges:

r = 1.01+0.29
−0.19 (+0.62

−0.34) . (29)

For the value r = 1/2 we obtain a ∆χ2 = 12.4 with respect
to the best fit point, which corresponds to an exclusion at
3.5σ for 1 dof. We conclude that the extra factor of two in
the oscillation phase is strongly disfavored by the UT fit.

4.3 Robustness of the UT analysis

In this subsection we investigate the robustness of our
conclusion with respect to variations of the input data for
the UT fit. To this aim we show in Table 1 the results of our
analysis by changing some of the numbers entering the UT
fit. The line “standard analysis” in the table corresponds
to the analysis described in the previous two subsections.
In particular, exactly the input data given in Table 1 of
[43] are used.

First we have investigated how our analysis depends
on the value for |Vub|. We show the results of the fit by
using only the value from exclusive (|Vub|(excl)) or inclusive
(|Vub|(incl)) decays, where the numbers are taken from [43].
Note that in our standard analysis both values are taken
into account, as described in Appendix A. We observe from
the numbers given in Table 1 that for the relatively small
value for |Vub| from exclusive measurements the fit gets
notably worse for r = 1/2. In contrast, for the relatively
large value from inclusive measurements the fit gets worse
for the standard oscillation phase (χ2

min = 3.9), whereas
for r = 1/2 the fit improves with respect to the standard
analysis (χ2

min = 7.8). The reason is that for large values
of |Vub| the radius of the circle in the (ρ̄, η̄) plane from
|Vub/Vcb| becomes larger, which worsens the fit for r =
1, whereas for r = 1/2 the agreement of the individual
allowed regions becomes better. Note however, that even
for |Vub|(incl) the goodness of fit for r = 1/2 is only 1%,
and r = 1/2 is disfavored with respect to r = 1 by 2σ. We
have also performed the analysis by using the (inclusive
and exclusive) averaged value |Vub|(PDG) obtained by the
PDG [48]. The fit using the extra factor of two is slightly
improved with respect to our standard analysis, however
r = 1/2 can still be excluded at 3.2σ.

Furthermore we have investigated how our result de-
pends on the input value for the charm quark mass mc.
The value mc = (1.2 ± 0.2) GeV is adopted by the CKM-
fitter group [36], in contrast to the value mc = (1.3 ±
0.1) GeV from the UTfit Collaboration [43] used in our
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Fig. 1. Unitarity triangle fit with ∆mK and ∆mBd obtained from the standard oscillation phase (upper panel) and the
oscillation phase with the extra factor of two (lower panel). The shaded regions correspond to the 95% CL regions (2 dof)
obtained from the constraints given by εK , |Vub/Vcb|, ∆mBd and sin 2β. In addition, constraints from the measurement of the
angles α and γ are used in the fit (not shown in the figure). The ellipses correspond to the 95% CL regions from all data
combined, and the stars mark the best fit points
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Table 1. The χ2
min for the standard oscillation phase (r = 1) and for the oscillation

phase with the extra factor of two (r = 1/2) for variations of the input data (see text
for details). The column “number of σ” gives the number of standard deviations with
which r = 1/2 is disfavored with respect to r = 1

χ2
min(r = 1) χ2

min(r = 1/2) number of σ

standard analysis 1.4 13.8 3.5
|Vub|(excl) = (33.0 ± 2.4 ± 4.6) × 10−4 2.9 17.6 3.8
|Vub|(incl) = (47.0 ± 4.4) × 10−4 3.9 7.8 2.0
|Vub|(PDG) = (36.7 ± 4.7) × 10−4 1.6 11.9 3.2
mc = (1.2 ± 0.2) GeV 1.4 11.9 3.2
constraints on α, γ not used 0.13 9.6 3.1
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Fig. 2. χ2 of the unitarity triangle fit as a function of the
parameter r defined in (28). For fixed r the χ2 is minimized
with respect to ρ̄ and η̄

standard analysis. The mild improvement of the fit for
r = 1/2 comes mainly from the larger error on mc, which
leads to a slightly larger allowed region from εK .

In the last line of Table 1 we have removed the con-
straints for the angles α and γ from the fit, i.e. we use
only εK , |Vub/Vcb|, ∆mBd

, sin 2β. We observe that the di-
rect constraints of α and γ contribute 4.2 units of χ2 to the
χ2

min for r = 1/2. However, also without the constraints
for α and γ the extra factor of two in the oscillation phase
is excluded by more than 3σ.

Finally let us comment on the very small value of
χ2

min = 0.13 (for 2 dof), which we obtain without the
constraints on α and γ for the standard oscillation phase.
In fact, the χ2-minimum value of 1.4 in the standard anal-
ysis comes mainly from α. To include the information on
this angle we are using the likelihood function from Fig. 10
of [43] (see Appendix A), which has two maxima around
107◦ and 176◦. The maximum at 176◦ is slightly preferred,
whereas the UT fit requires the other maximum. The very
small χ2-minimum value obtained without using the like-
lihood for α shows that the fit is dominated by rather
large theoretical errors. Therefore, χ2 is significantly lower
as expected just from statistics. The fact that even with
these assumptions on theoretical errors the χ2 is large for

r = 1/2 implies that the exclusion of the extra factor of
two in the oscillation phase is rather robust.

5 Conclusions

In this paper we have reconsidered claims that the stan-
dard oscillation phase (19) has to be corrected by extra
factors. We have focused on possible tests of these ex-
tra factors by using experimental data. The usual starting
point to derive these non-quantum-theoretical expressions
for the oscillation phase is (11), which says that mass
eigenstates with different masses need different times to
reach the spatial point where the interference of the am-
plitudes for the different mass eigenstates takes place. In
this way we have derived the phase ∆ϕ of (14). The aim
of our theoretical discussion was to consider both neutrino
oscillations and oscillations of neutral flavored mesons. For
M0−M̄0 oscillations, it was important to include the non-
relativistic limit in our phase considerations.

We have obtained the following results.
(1) The non-quantum-theoretical phase ∆ϕ of (14) be-
comes ambiguous in the non-relativistic case, because it
contains a small but arbitrary momentum difference ∆p.
We have stressed that in the correct quantum-theoretical
treatment, where the amplitudes interfere at the same
time, this arbitrary term does not show up.
(2) If we adjust ∆p in (14) such that the mass eigenstates
have the same energy, then a momentum-dependent ex-
tra factor appears in ∆ϕ – see (17). We have shown that
this extra momentum dependence is in disagreement with
measurements of the KL −KS mass difference at different
kaon energies.
(3) If ∆p = 0, the notorious factor of two appears in ∆ϕ –
see (16). We have demonstrated that using KL − KS and
BdH − BdL mass differences extracted from the data with
the extra factor of two in the K0 � K̄0 and B0

d � B̄0
d

oscillation phases, respectively, the unitarity triangle fit in
the standard model becomes significantly worse compared
to the fit with the standard mass differences. The phase
with the extra factor of two is excluded at more than three
standard deviations with respect to the standard phase.

Concerning this last point, as an additional check, we
have treated the extra factor in the oscillation phase as a
free parameter r (see (28)) and considered χ2 as a func-
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tion of r. It is remarkable that the minimum of χ2 occurs
nearly precisely at r = 1, which corresponds to the stan-
dard oscillation phase. This result can be regarded as a
successful test of quantum theory. It is likely that in the
future, with accumulated data used in the unitarity trian-
gle fit, the exclusion of the extra factor of two will become
even more significant.

Acknowledgements. S.M.B. acknowledges the support by the
Italian Program “Rientro dei Cervelli”. W.G. would like to
thank S.T. Petcov for an invitation to SISSA, where part of
this work was performed. He is also grateful to A.Yu. Smirnov
for a useful discussion. T.S. is supported by a “Marie Curie
Intra-European Fellowship within the 6th European Commu-
nity Framework Programme.”

Appendix A
Details of our UT fit procedure

The fit of the UT is performed by adopting the following
χ2-function:

χ2(ρ̄, η̄, B̂K , |Vub|)
=

∑
i,j

(xexp
i − xpred

i )S−1
ij (xexp

j − xpred
j )

+χ2
α + χ2

syst(B̂K) + χ2
syst(|Vub|). (A.1)

The final χ2 is obtained by minimizing (A.1) with respect
to B̂K and |Vub|:

χ2(ρ̄, η̄) = Min
[
χ2(ρ̄, η̄, B̂K , |Vub|); B̂K , |Vub|

]
. (A.2)

In (A.1) the indices i, j run over (εK , |Vub/Vcb|, ∆mBd
, β,

γ) and Sij is the covariance matrix of these observables
containing the experimental as well as theoretical uncer-
tainties. It also takes into account correlations between the
various observables induced by the experimental errors of
parameters such as mt, λ and |Vcb|, which are common
to more than one observable. The term χ2

α contains the
information on the angle α, and is defined as

χ2
α = −2 ln[L(α)/MaxL(α)], (A.3)

where L(α) is the likelihood function for α read off from
Fig. 10 of [43].

For the treatment of theoretical uncertainties we fol-
low the common practice in UT fits to split the error
into a Gaussian part and into a “flat” part, which can-
not be assigned a probabilistic interpretation [36,42,43].
For the parameter B̂K relevant for εK one has B̂K =
0.86 ± 0.06 ± 0.14, where the first error is Gaussian and
the second is “flat”. To include both errors in our fit we
construct a likelihood function L(B̂k) by convoluting a
Gaussian distribution with width 0.06 with a flat distri-
bution which is non-zero in the interval [−0.14, +0.14] and
zero outside. Then this likelihood is converted into a χ2

by

χ2
syst(B̂K) = −2 ln[L(B̂k)/MaxL(B̂k)], (A.4)

which is added to the total χ2 according to (A.1). The
resulting χ2 is minimised for fixed ρ̄ and η̄ with respect to
B̂K .

The value of |Vub| can be obtained from exclusive and
inclusive decays, where the exclusive measurement suffers
from theoretical uncertainties characterized by a “flat” er-
ror (see e.g. Table 1 of [43]). In our standard analysis we
include both values by constructing a likelihood function
L(|Vub|) = Lexcl(|Vub|) × Lincl(|Vub|), where Lexcl(|Vub|) is
obtained similar as in the case of B̂K by folding a Gaus-
sian and a flat distribution, whereas Lincl(|Vub|) is just
a Gaussian distribution. Finally, the term χ2

syst(|Vub|) in
(A.1) is obtained by

χ2
syst(|Vub|) = −2 ln[L(|Vub|)/MaxL(|Vub|)]. (A.5)

The dependence of our results on the treatment of |Vub| is
discussed in Sect. 4.3.
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